Advanced Application 19

Construction Stage Analysis for FSM (Full Staging Method) using general functions

Contents

Outlir	ne	. 1
В	Bridge profile and general section	. 2
Ν	Naterials & Strength	3
L	oads	3
С	Composition of the Construction Stages	. 4
Work	Environment Settings	.6
Defin	ition of Properties	.7
D	Definition of Materials	7
D	Definition of Section	. 8
D	Definition of Time-dependent Material Properties	11
D	Definition of Time-dependent Material Properties	11
Struc	ctural Modeling	13
E	Element Generation	13
S	Support Generation	14
G	Group Definition	15
S	Structure Group Assignment	16
Boun	ndary Conditions Input	17
R	Rigid Links	17
S	Supports Input	18
Cons	struction Stage Loads Input	19
D	Define Load Conditions	19
S	Self Weight	20
D	Dead Load	21
Т	endon Prestress Load	24
S	Superimposed Dead Loads	29
Loadi	ing Input on the Completed Structure	30

Wind Loading	
Temperature	
Live Load	35
Differential Settlement	40
Definition of Construction Stages	42
Performing Structural Analysis	44
Checking Analysis Results	46
Element Properties & Section Properties for each Construction Stage	
Checking Construction Stage Member Forces & Stresses	
Checking Results using Graphs	51
Checking Results using Tables	52
Prestress Losses	
Checking Tendon Information	
Checking Moving Load Analysis Results	
Checking Stresses due to Combined Loads	60

Outline

FSM (Full Staging construction Method) is a very basic method in constructing posttensioned concrete bridges. Dead weight of concrete, formwork and falsework are fully shored over the full spans of a bridge until the concrete gains a certain level of strength.

FSM can be economical if the horizontal alignment of a bridge is curved or the width of the bridge deck widens, provided that the height of the piers are not too high.

In the case of a bridge with long spans, the use of continuous tendons can be limited, thereby requiring construction joints. Each segment may be constructed sequentially span by span. Structural analysis is carried out on the basis of construction stages defined by the construction joints. Although a bridge is supported by shoring, FSM is generally analyzed with the assumption that effect of support is negated by the effect of prestressing.

When FSM is applied to a bridge with continuous spans, the first stage is a simple span, and it becomes continuous with the progress of the construction stages. In comparison with an analysis that does not consider construction stages, the construction stage analysis results in lower negative support moments higher positive span moments. As such, a bridge constructed by FSM needs to be analyzed with construction stages reflecting both the change in structure, element load and boundary conditions as well as time-dependent material properties, including creep, shrinkage and modulus of elasticity.

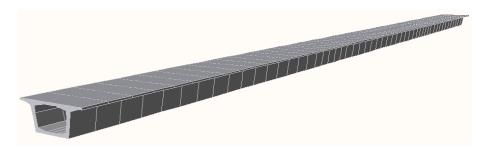


Figure 1. Bridge to be analyzed

Bridge profile and general section

This example has been simplified from an actual project for the purpose of illustrating construction stage analysis using FSM.

The bridge profile is defined as follows:

Structure type: 3 continuous span PSC Box girder bridge (F.S.M) Spans: L = 40.0 + 45.0 + 40.0 = 125.0mBridge width: 8.5m Skew angle: 90°

Figure 2. Longitudinal Section

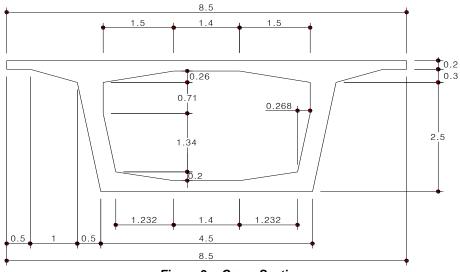


Figure 3. Cross Section

Materials & Strength

► Concrete

- 1) Specified Strength: $f_{cu} = 45MPa$
- 2) Modulus of Elasticity: $E_c = 3.0124 \times 10^4 MPa$

PS Steel Tendons

- 1) Yield Strength: $f_{py} = 1580MPa$
- 2) Tensile Strength: $f_{pu} = 1860MPa$
- 3) Nominal Sectional Area: $A_p = 100 cm^2$
- 4) Modulus of Elasticity: $E_p = 1.95 \times 10^5 MPa$
- 5) Initial Prestressing Force: $f_{pj} = 0.75 f_{pu} = 1395 MPa$
- 6) Anchorage Slip: $\Delta s = 6mm$
- 7) Coefficient of Curvature Friction : $\mu = 0.25 / rad$
- 8) Coefficient of Wobble Friction: k = 0.0066/m

Loads

Primary loads and special loads pertaining to the primary loads

- 1) Dead Loads
 - A. Reinforced Concrete: $24.52kN/m^2$
 - B. Asphalt Concrete: $22.56kN/m^2$
 - C. Barriers and safety fences
 - D. Prestress, creep, shrinkage
- 2) Live Loads
 - A. Vehicle Loads: Types HA and HB Loading
- 3) Differential settlements
 - : The worst combination of each pier settlement of 10mm

Secondary loads

- 1) Temperature
 - A. For total deformation (±15°)
 - B. Temperature differential between top & bottom chords (±5°)
- 2) Wind

Composition of the Construction Stages

This figure below represents the entire construction stage process. Construction stages are generated excluding the erection of the shoring and temporary bents themselves, which have no effect on the structure.

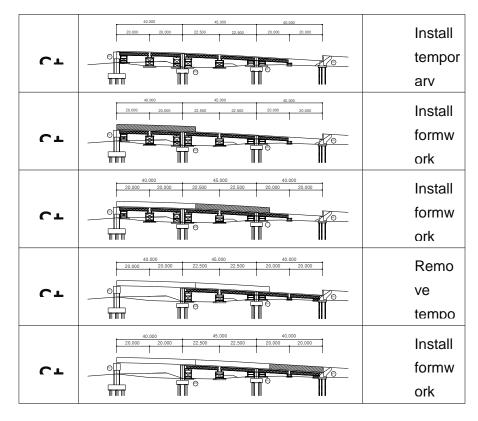
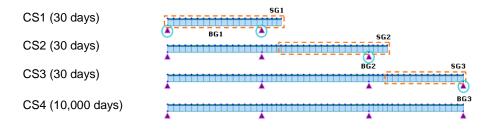



Figure 4. Construction Stage Chart

The following construction stages are reflected in the analysis.

4

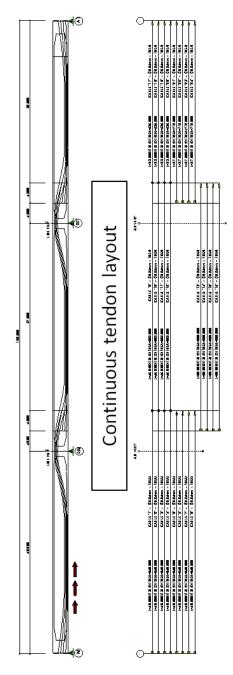


Figure 5. Tendon Placement Layout

Work Environment Settings

For FSM construction stage analysis, open a new file, (**New Project**), and save as (**Save**) 'FSM.mcb'.

Select '**kN**' and '**m**' for the unit system. The unit system can be conveniently changed at any time later depending on your preferred types of input data.

Tools / Unit System®

Length> m ; Force>kN ,

The unit system can be changed by clicking "Unit Selection" () on the Status Bar at the bottom of the screen.

0 Unit System	n	X			
Length	Force (Mass)	-Heat			
o m	N (kg)	🔵 cal			
o cm	o kN (ton)	kcal			
o mm	🔿 kgf (kg)	oJ			
0 A	🔿 tonf (ton)				
● ft	○ lbf (lb)	⊙ kJ			
o in	💿 kips (kips/g)	 Btu 			
– Temperature					
 Celsius 	 Fahrenheit 				
Note : Selected units are displayed in relevant dialog boxes, Values are NOT changed with units,					
Set/Change	e Default Unit System				
ОК	Apply	Cancel			

Figure 6. Unit System Setting

Definition of Properties

Definition of Materials

Define the material of the PSC box by selecting one from the built-in database. The material for tendons can be defined using the User Defined function.

Properties / قتاً Material Properties Click Add ب	
Type> Concrete ; Standard> BS(RC) DB> C45 	
Name> Tendon ; Type> User Defined Modulus of Elasticity (1.95e8) Weight Density (78.5) ♀↓	

🖗 The tendon	♦ Properties	Tata X
weight is	Material Section Thickness	General Metaviel ID 2 Name Tendon
weight is automatically accounted for after grouting.	Material Section Thickness ID Name I C45 Concrete BS(hC) C45 Correte BS(hC) C65 Copy Percent Renumber Cose	General Material ID 2 Name Tendon Haterial ID 2 Name Tendon Elasticity Data User Defined Standard None Poil Type of Design User Defined Standard None Poil Orthotropic Orthotropic DB Poil Poil User Defined 1.956-8 MJ/m² Poilscon's Ratio O Modulus of Elasticity : 1.956-8 MJ/m² Poilscon's Ratio O User Defined 0.0002-000 I/C1 Weight Density : ØJ/m² Modulus of Elasticity : 0.0002-000 I/C1 Weight Density : ØJ/m² Poisson's Ratio : 0 0 I/C1 Weight Density : ØJ/m² Plastic Material Name NONE Plastic Material Name NONE Plastic Material Name Plastic Material Name NONE Plastic Material Name NONE Plastic Material Name Damping Ratio : 0 kcal/nhr/C1 Damping Ratio 0

Figure 7. Material Data Input Dialog Box

Definition of Section

Refer to the cross section dimensions in Figure 8 to define the section of the PSC box.

Properties / I Section Properties
Click Add
PSC tab Section ID (1) ; Name (Span)
PSC-1CELL, 2CELL Joint On/Off>JO1 (on), JI1 (on), JI3 (on), JI5 (on) Web Thick> for Shear t1 (on), t2 (on), t3 (on), for Torsion(min) (on) Offset>Center-Top Outer
HO1 (0.2) ; HO2 (0.3) ; HO2-1 (0) ; HO3 (2.5) BO1 (1.5) ; BO1-1 (0.5) ; BO2 (0.5) ; BO3 (2.25)
Inner HI1(0.24) ; HI2(0.26) ; HI2-1(0) ; HI3(2.05) ; HI3-1(0.71) HI4 (0.2) ; HI4-1 (0) ; HI5 (0.25) BI1(2.2) ; BI1-1(0.7) ; BI2-1(2.2) ; BI3(1.932) ; BI3-1(0.7)
Or click Table Input to enter the input data in a table.

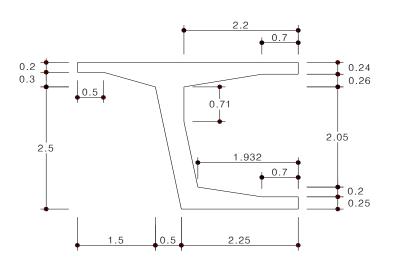


Figure 8. Input Data for the Cross Section

- Checking on "Mesh Size for Stiff Calc." enables us to define a maximum size of mesh, which is used to calculate the section properties.
- "Consider Shear Deformation" accounts for shear deformation.

© Section Data 📉	○ PSC Viewer ※
DB/User Value SRC Combined PSC Tagered Composte Section ID 1 TPSC-LCELL 2 Mash Size for Stiff. Calc. m Joint 0n/Off 0uter 0uter 0uter 11	Bit Bit
Shear Check Inner HI 24 m BII 22 m Z1 : [] m & wlith 26 m BII-2 0 m HII-2 0 m	Viewer
0 m 💌	♦ Change Offset ×
Offset : Center-Top Change Offset Table Input Display Centroid Display Centroid	Offset : Center-Top Center Loc. : Centroid Center of Section Horizontal offset : to textreme Fiber User I: 0 m J: 0 m
Show Calculation Results OK Cancel Apply	Vertical offset : 💿 to Extreme Fiber 💿 User I : 🕕 m J : 🕕 m
	User Offset Reference : Centroid Extreme Fiber(s)
	Display Offset Point OK Cancel

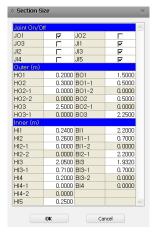
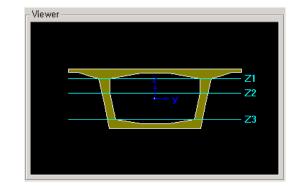


Figure 10. Table Input (PSC)

Figure 9. Section Input Dialog Box

Cross sectional dimensions can be entered via a table upon clicking Table Input... for the PSC section.

This is faster than directly entering the data in the dialog box for a large amount of dimensional data.


The table is compatible with Excel. Frequently used cross sectional dimensions can be saved to copy & paste later.

The table becomes compatible with Excel by entering "0" for Check Off (\Box) and "1" for Check on ($\overline{\Box}$).

Shear Check

Assign the locations for shear calculations on the PSC section. Numerical data can be entered manually, or if "Auto" is selected, shear calculations take place at the top and bottom of the web(s). The shear results are displayed in no. 5~10 of the Beam Stress (PSC).

– Shear Check—	
Z1:0 m	Auto
Z2: Centroid	
Z3:0m	

Web Thick.

-Web Thick, for Shear(t	•	Auto		
t1:0	m			
t2:0	m			
t3:0	m			
for Torsion(min,)				
0	m			

for Shear(total)

Enter the thicknesses to be used for shear calculations at the locations defined for Shear Check at Z1 through Z3. Enter the sum of web thicknesses at a given location. Check on "Auto" for automatic calculations.

for Torsion(min.)

Enter a minimum thickness for torsion calculation.

Definition of Time-dependent Material Properties

Define the time-dependent properties of the concrete (creep coefficients shrinkage and strength).

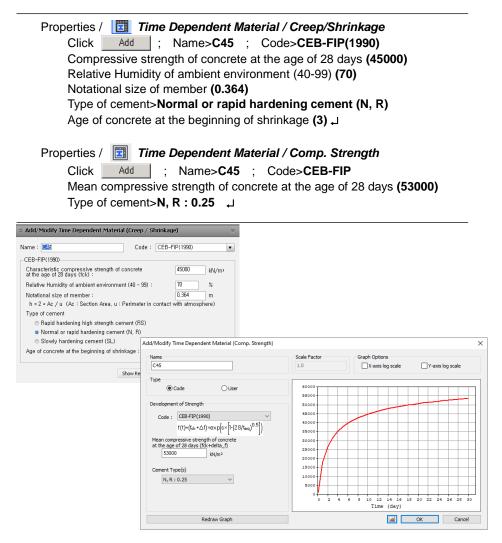


Figure 11. Time Dependent Material Data

Link the time dependent material properties to the material properties. The creep coefficients, shrinkage and concrete strength curves defined earlier need to be linked to the corresponding material property in order to carry out construction stage analysis reflecting their effects.

Properties / *Time Dependent* / http://www.material Link Time Dependent Material Type Creep/Shrinkage>C45 Comp. Strength>C45 Select Material for Assign>Materials> 1:C45 > Selected Materials Add / Modify

Time Dependent Material Type Creep/Shrinkage C45 ▼ Comp. Strength C45 ▼
Select Material to Assign
Materials Selected Materials
1:C45 2:Tendon
<
Operation
Add / Modify Delete
Add / Modify Delete No Mat Creep/Shr Comp. Str 1 C45 C45 C45
No Mat Creep/Shr Comp. Str
No Mat Creep/Shr Comp. Str
No Mat Creep/Shr Comp. Str
No Mat Creep/Shr Comp. Str 1 C45 C45 C45
No Mat Creep/Shr Comp. Str 1 C45 C45 C45 <

Figure 12. Linking Time Dependent Material Property to the Material Property.

Structural Modeling

Element Generation

Generate a girder using the "Extrude" function.

Node/Element / 🥜 Create Nodes Coordinates (x, y, z) (0, 0, 0) Apply م
Node/Element / 1 Extrude
Select All
Extrude Type>Node -> Line Element
Element Attribute
Element Type> Beam
Material>1: C45
Section>1: Span
Translation > Unequal Distance
Axis> x
لم Distances (16@2.5, 5@2, 14@2.5, 5@2, 12@2.5)

🔲 Zoom Fit

Vew Structure Mode/Bernent		Load Analysis Results P		Tools Collector Rotate Map-mesh Map-mesh Map-mesh Map-mesh	Change Parameters	(Ves)	_8 8 H0 - 83
1 K (1) C (2) R (1)							
(1) °€ °° (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		- 16	1111日日本115		III III III III III		
do finance avectory. Next coll conde tament a set to the tament a set t		₩ H.					
Generation York	4 \Model Wew/ Mosape Window						> × <u>¬</u>
6							<u>v</u>

Figure 13. Girder Generation

Support Generation

Considering the spans (40+45+40), create nodes to which boundary conditions will be assigned.

Start No No	nt / Create Nodes de Number ↓ de Numbering Option> User-Defined Nun Newly Created Number (61) <u>OK</u> ates (x, y, z) (0, 1.5, -3) ^Q	nber
Сору	x (0) (x, y, 2) (0, 110, 0)	
Nu	mber of Times (1) tances (dx, dy, dz) (0, -3, 0) <u>Apply</u> لم	
 Sel Mode> C Translat		
	Criti 2dl 2 ~ (Critizosamenta ara Sedragoniusernia)# \$25000ammea vioran 2dB3Mmi4 vy ~ (Moset	iew)X
Ver Structure Nicde/Element	Reserve Bonder and Anders Britle PC Andrew Dorg Over Tool + New A State Device A State Device A State	Q Heb*_∂X
Tine Neru 4 > Note: Element Boundary Mass Load Translate Nodes Start Node Number 1 (00 Made Case O Move	Hitee ⊟iHi	
- Translaten ● Equal Eletance ≪ 0,0/41 (0,0,0) Nember at Times : 1 (0) ● Unequal Distance Auto : ● x ○ y ○ z		
© Abbray Distance : (40,640 m (Esample: 5, 3, 4,5, 3950) Directon Vector : [E.0.0 m Merge Busicale Notes		
Copy Node Attributes Intersect Frame Elements		(a) (c) (c)

Since the depth of the girder is 3m, and the distance between the bearings is 3m with the working point being Center-Top, the supports are created at Z=-3m & Y=±1.5m.

Figure 14. Generation of Support Nodes

N IN IN IN IN IN IN IN

Group Definition

Refer to "Construction Stage Configuration" on Figure 4 for the list of the groups to be defined.

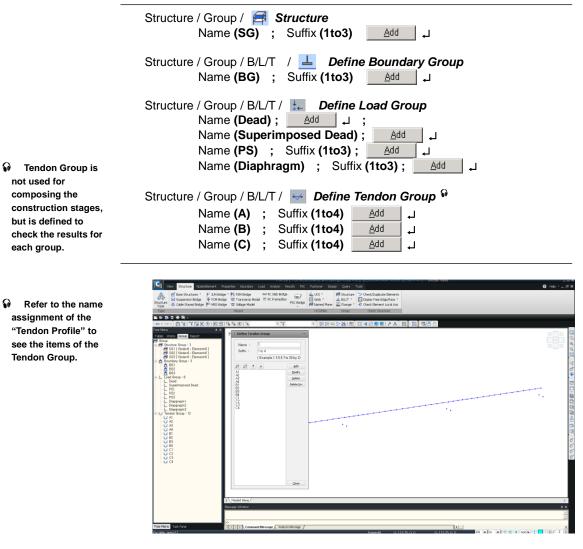
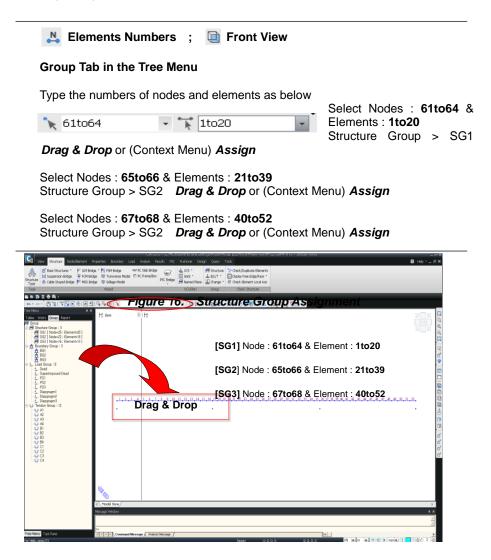



Figure 15. Group Generation

Structure Group Assignment

Assign the elements, which will be activated at each stage, to SG1~3 respectively. Assign the elements to Structure Group by using "Drag & Drop," or by right-clicking and selecting "Assign".

Boundary Conditions Input

Rigid Links

Considering the centroid of the cross section of the PSC Box, rigid links are connected to the supports.

Turn on the node number if necessary when picking up nodes

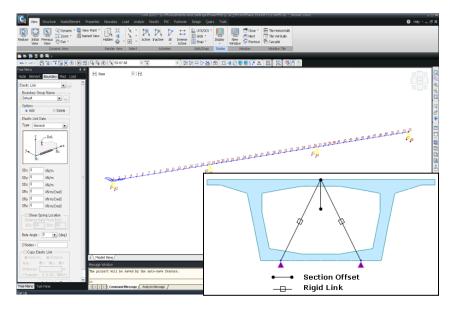


Figure 17. Rigid Links

Supports Input

Considering the construction stages, the supports are defined as below.

🔁 Top View ; 🖸	Redraw
Boundary / 🧀 Define	••
Boundary Group> B	(Node : 61) ; Support Type>Dy (on), Dz(on) ↓
	(Node : 62) ; Support Type>Dz(on) ↓
	(Node : 63) ; Support Type>Dx(on), Dy(on), Dz(on) ↓
🖄 Select Single	(Node : 64) ; Support Type>Dx(on), Dz(on) ↓
Boundary Group> B	G2
	(Node : 65) ; Support Type> Dy (on), Dz (on)
🖄 Select Single	(Node : 66) ; Support Type> Dz (on) ↓
•	G3 (Node : 67) ; Support Type>Dy(on), Dz(on) ↓ (Node : 68) ; Support Type>Dz(on) ↓

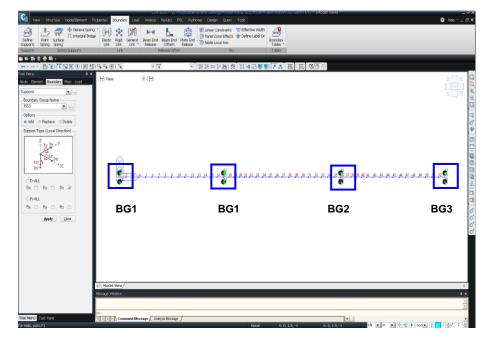


Figure 18. Boundary Condition Input

Construction Stage Loads Input

Define Load Conditions

Define load cases for analysis.

We take the time to define the load "Type" then we can take advantage of the ability to automatically generate load combinations using the "Auto Generate" function. Using these Types of load case we may generate the load combinations after application of the load factors as per the design standard.

C Redraw

Load / 🔟 Static Load Cases	
Name (Self Weight)	; Type>Construction Stage Load (CS)
Name (Non-Structure Dead)	; Type>Construction Stage Load (CS) ,
Name (Prestress)	; Type>Construction Stage Load (CS) ,
Name (Superimposed)	; Type>Construction Stage Load (CS) ,
Name (Wind)	; Type>Wind Load on Structure (W)
Name (Temperature (+))	; Type>Temperature (T) 斗
Name (Temperature (-))	; Type>Temperature (T) 斗
Name (Top-Bot Temp Diff(+))	; Type>Temperature Gradient (TPG) ~
Name (Top-Bot Temp Diff(-))	; Type>Temperature Gradient (TPG) ,

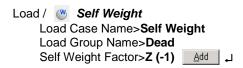

Vame	9	: Top-Bot 1	Temp Diff(-)		Add
Case		All Load (Case	•	Modify
Туре		: Temperat	ure Gradient (TPG, TG)	•	Delete
Descr	riptio	n :			
	10	Name	Туре	Descriptio	n
<u> </u>	1	Self Weight	Construction Stage Load (
	2	Non-Structu	Construction Stage Load (
	3	Prestress	Construction Stage Load (
	4	Superimpos	Construction Stage Load (
	5	Wind	Wind Load on Structure (
	6	Temperatur	Temperature (T, TU)		
	7	Temperatur	Temperature (T, TU)		
	8	Top-Bot Te	Temperature Gradient (TP		
	9	Top-Bot Te	Temperature Gradient (TP		
¥					

Figure 19. Load Cases Definition

Self Weight

Enter the self weight.

Define the structure's self weight and activate it at the first construction stage. Then the self weights of the elements activated in the subsequent construction stages will automatically be applied.

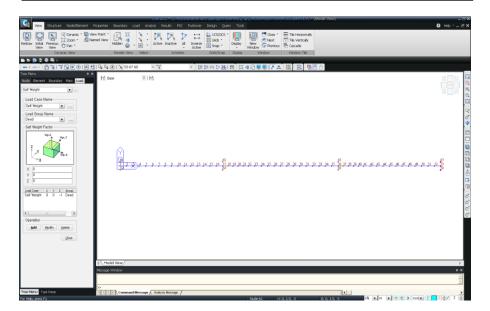
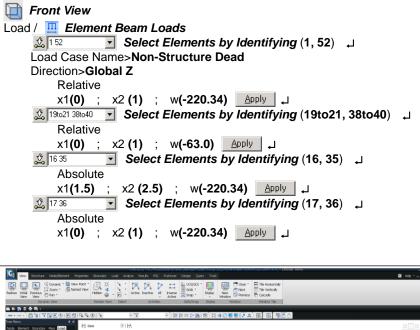



Figure 20. Self Weight Input

Dead Load

Enter diaphragms and construction joint blocks, as loads as they have not been reflected in the model.

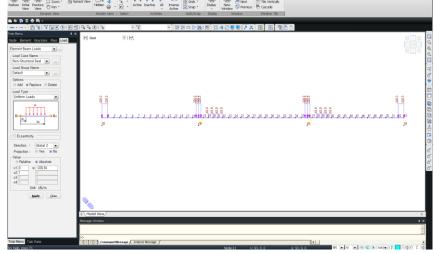
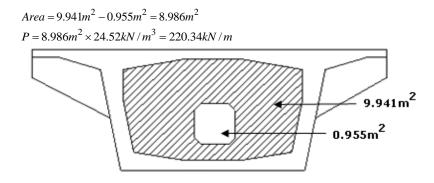
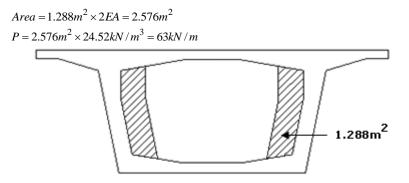


Figure 21. Miscellaneous Dead Loads


Figure 22. Dead Load Layout

The diaphragms at the supports and the construction joint blocks have not been considered as structural elements in this longitudinal analysis and are thus treated as loads. Their cross sectional areas are calculated and converted into Beam Load over the corresponding lengths. Other additional dead loads may exist, but are ignored in this Tutorial.

Diaphragm (End: 2m, Intermediate Support: 2.5m)

Construction Joint Block

ADVANCED APPLICATIONS

We need to assign the loads to Load Groups and activate the Load Groups in the corresponding construction stages.

Because the magnitudes of the Beam Loads are the same, setting the Load Group to Default is convenient for input. We will now see how to modify the Load Group using the Table Tab.

By selecting the desired columns, we can adjust the locations in Beam Load Table. The row column containing the Group information is located at the end of the Table. For convenience, we will select the entire column, and move it next to the Element numbers.

Assign Load Group: Diaphragm1 to 3 to the loads in order to activate them in Stages 1 through 3.

Load / Load Tables / Static Load / Beam Loads Assign Element 1~20> Diaphragm1 Element 21~39>Diaphragm2 Element 40~52>Diaphragm3

Note that the Group column is found at the last column in the table as shown in the first figure of the three figures below. In the second figure, the Group column was relocated to the front for convenience. The third figure depicts how Diaphram is applied to the elements.

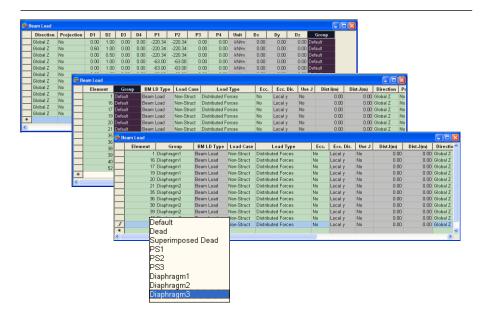


Figure 23. Changing Load Group using Table

Tendon Prestress Load

Begin : 0,006

End : 0,006

Define the properties of the Tendon related to the material, strength, losses. etc

	/ Load / Temp./Prestress / ل Click <u>Add</u> ب	실 Tendon Property	/	
axation nt can be y selecting quation, CEB-FIP	Total Tendon Area> or Strand Diam Duct Diameter (0.1) Relaxation Coefficie Ultimate Strength> Curvature Friction F	nal(Post-Tension) ; 0.0016112 heter> 12.9mm(1χ3) ; ent> CEB-FIP(2.5%) ^G (1860000) ; Yield St actor> (0.25) ; Wob w in)> Begin(0.006) , E	Number of Str rength> (158000 ble Friction Fact	ands> 19 0)
	Add/Modify Tendon Property	x	Tendon Area	×
	– Tendon Type –		Strand Diameter	: 12,9mm(1x3) 💌
	Tendon Name	Tendon	Number of Strands	: 19
	Tendon Type	Internal(Post-Tension) 🔻		
ibonded"	Material 2	2: Tendon 🔻		OK Cancel
d, the	Total Tendon Area	.0016112 m²		
tiffness is	Duct Diameter	.1 m		
d on the	✓ Relaxation Coefficient	CEB-FIP v 2.5 %		
	 Relaxation Coefficient Ultimate Strength 			
d on the he net ction.		CEB-FIP 💌 2,5 %		
he net	Ultimate Strength	CEB-FIP		
he net ction. " reflects	Ultimate Strength Yield Strength	CEB-FIP 2.5 % 1860000 kN/m² 1580000 kN/m²		
he net ction.	Ultimate Strength Yield Strength Curvature Friction Factor	CEB-FIP 2.5 % 1860000 kN/m² 1580000 kN/m² .25 .25		

Figure 24. Tendon Property Dialog

m

m

Bonded

Unbonded

OK Cancel <u>A</u>pply

ଜ Rela Coefficie defined by Magura e JTG04 or Code.

ନ lf "Un is selected section st calculated basis of th cross sec "Bonded" the comp stiffness the tendons. The Tendon Profile can be defined in many ways such as defining the inflection points, but this example uses a common approach often used in practice, using the Tendon ordinates from drawings.

Referring to the values in the attached Excel file (*TD profile.xls*), prepared on the basis of the tendon drawings the ordinates of the tendon at every 2m are pasted into the software.

Load / Temp./Prestress / ☑ *Tendon Profile* Tendon Name (A1L) ; Group (A1) Tendon Property> **Tendon** ; Assigned Elements (1to20) Input Type> 3-D ; Curve Type> **Spline** Profile 1> x (0), y (0), z (-1) [♀] 2> x (2), y (0), z (-1.2590) 25> x (48), y (0), z (-1.25)

x Axis Direction> I->J of Elem.1 ; x Axis Rot. Angle (-11.3)

Profile Inserton Point> End-I of Elem.1

Offset y : (2.666)

Copy & Paste the values from the Excel file to enter the Profile. We may also copy the Profile after creating an MCT file.

Transfer Length may be specified to consider the unstressed length of the anchorage.

Checking on "Typical Tendon" and entering the number of tendons can be used to represent a number of tendons of the same profile. This is also handy when preliminary analysis is

Add/Modify Tendon Profile	x			
Tendon Name : A1L	Group : A1 💌			
Tendon Property : Tendon 💌				
Assigned Elements : 1to20				
Input Type Str	aight Length of Tendon			
0 2-D 0 3-D Be	egin: 0 m			
Curve Type Spline Round Er	nd: 0 m			
	of Tendons 1 🚔			
Transfer_Length				
User defined Length 🔻 Begin :	0 End : 0 m			
Profile Reference Axis : O Straight	t O Curve o Element			
77				
0.0326436				
-4.95735	30 40			
	x			
Z 0.0326456				
-4,96725				
0 5 10 20	30 40 X			
x(m) y(m) z(m) fi	x Ry[deg] Rz[deg] 📤			
1 0,0000 0,0000 -1,0000	0,00 0,00			
2 2,0000 0,0000 -1,2590 3 4,0000 0,0000 -1,5352 □	0,00 0,00			
4 6.0000 0.0000 -1.5352 4 4 6.0000 0.0000 -1.7722	0,00 0,00			
5 8.0000 0.0000 -1.9613	0.00 0.00			
6 10,0000 0,0000 -2,1028	0,00 0,00			
7 12,0000 0,0000 -2,1970	0,00 0,00			
8 14,0000 0,0000 -2,2441	0,00 0,00			
9 16,0000 0,0000 -2,2500	0,00 0,00			
10 18,0000 0,0000 -2,2500	0,00 0,00 💌			
Point of Sym, : First Last	Make Symmetric Tendon			
Profile Insertion Point : • End-I	D End-J of Elem.			
x Axis Direction : • -> J (J -> I of Elem, 1			
x Axis Rot, Angle : -11.3 🔶 [deg] 🕜 Projection			
Offset y: 2,666 m	z: 0 m			
ОК	Cancel Apply			
ŬK.	Cancer Bhbia			

Figure 25. Tendon Profile Input Dialog

From the tendon profile drawings, x-z coordinates are obtained at every 2m. The result (TD Profile.xls) contains the values as if the tendons were placed in the centroidal 2-D plane, each side. We need to translate the layout using y-Offset and rotate the layout using x-Rotation to properly position them in the webs of the PSC section.

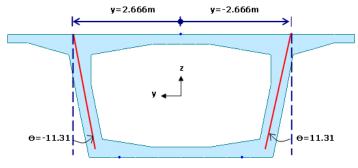


Figure 26. 3-Dimentional Tendon Profile Input

Copy and paste the values of x, y and z from the Excel file as below, and position the tendons in the webs by y-Offset and x-Rotation depending on the "left" or "right" tendon.

26

The Name and the Assigned Elements for all Tendon Profiles are as follows:

Ex) A1L → X coordinate (A, B, C), Z coordinate (1, 2, 3, 4), Y coordinate (Left, Right)

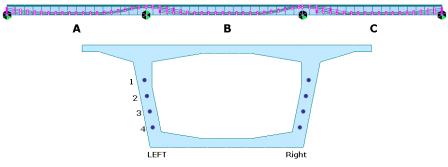


Figure 27. Name Assignment for Tendon Profile

Tendon Profile	Assigned Element	Tendon Profile	Assigned Element
A1, A2	1 ~ 20	A3, A4	1 ~ 20
B1, B2	21 ~ 39	B3, B4	19 ~ 39
C1, C2	40 ~ 52	C3, C4	38 ~ 52

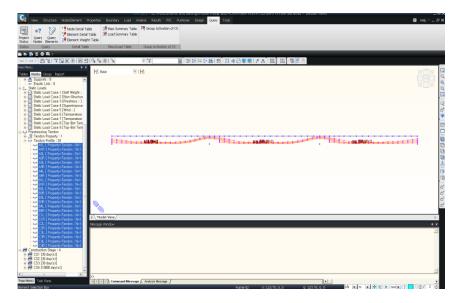


Figure 28. Result of Tendon Profile Input

After defining all the Tendon Profiles, assign the Load Groups (PS1~3) and then apply prestress loads so that the defined Tendon Profiles can be applied to each construction stage.

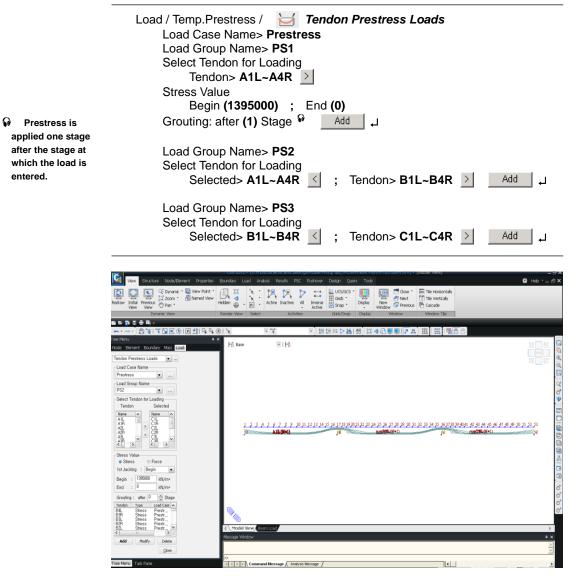


Figure 29. Loading Tendon Prestress

Superimposed Dead Loads

Superimposed Dead Loads are applied as Beam Load onto the superstructure.

Barriers	19.74 <i>kN / m</i>	
Safety Fence	S	1kN/m
Asphalt concrete pavement $7.5m \times 8cm \times 22.56kN/m^3$		13.5 2 N/ n
Noise barriers		1.52kN/m
Total		35.796kN/m

Load / Static Loads / Beam Loads/ III Element Select All Load Case Name>Superimposed Load Group Name> Superimposed dead Load Type>Uniform Loads Value Relative ; x1(0) ; x2 (1) ; w(-35.796) Apply J

Vew Structure Node/Element Properties State Loads Seemic Settlement/ Temp./Prestees Construction Stage Load Tables Moving Load Heat of Hydration Settlement/	Boundary Load Analysis R	s and Setting swusewide a set over the set of the set o	Tools	Pressure Loads Hydrostatic Pressure Assign Plane Loads	H View) ♥ Initial Forces * ● Assign Floor Loads *	— С Ф Нир ~ _ В
Load Type	Create Load Cases	Structure Loads / Masses	Beam Load	Pressure Load	Initial Forces/Etc.	
≥≈⊼3550; ⊷·→·©%%%9K00%14468	× • •	- 12 12 二 14 🎽	en i 197 - • /		1 HAT 1 HA ()	
Node Element Boundary Mass Load	Hit Base					21 🔜 🖄
Element Beam Loads Load Case Name Superimposed Load Group Name						[1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
Options • • Add • Replace • Delete Load Type	1518 1518 1518 1518 1518 1518 1518 1518		358 358 358 358			
Uniform Loads	32 32	7 97 99 90 91 92 93 94 95 96 97 989 980 Ø	n p 2 p 3 p4 p 5	g6 g7 g8 g9 g0 g1 g2 g3	94 95 969798999000 92 96	10 94 95 96 97 98 90 90 91 92 93 59
Eccentricity Direction : Global Z • Projection : Ves • No Value • Relative Absolute x1 (0) w - 55.755						
x2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Model View		_			4 × 6
Tree Menui Task Pane	Command Messa	ge / Analysis Message /			•	<u>×</u>

Figure 30. Loading Superimposed dead Loads

Loading Input on the Completed Structure

Wind Loading

wind loading of 3 kN/m²

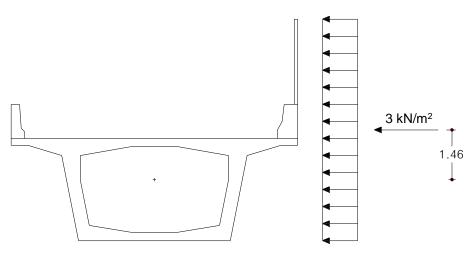
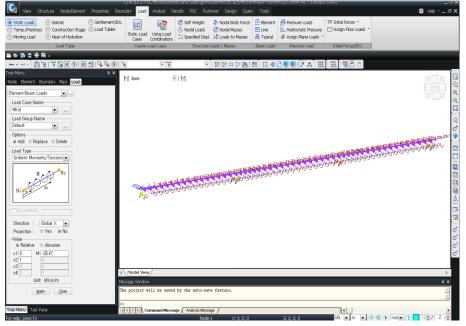


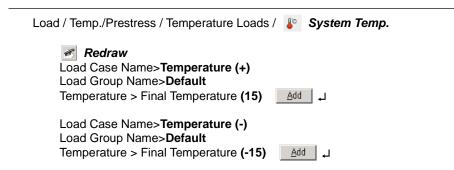
Figure 31. Wind Load Distribution

Total Height = Section Depth + Barriers + Noise barriers = 3 + 1 + 2.5 = 6.5mWind Pressure = $3kN/m^2$

Wind Load = $6.5m \times 3kN/m^2 = 19.5kN/m$ (Horizontal Load) = $19.5kN/m \times -1.46m = -28.47kN \cdot m/m$ (Eccentricity Moment)

	Enter the wind loads.
	Load / Static Loads/ Beam Loads / 🧾 Element
oading aining to the d Groups, ch are not vated during construction jes, are led in tCS.	Image: Select All Image: Select All Image: Select All Load Group Name>Default Image: Select All Load Type>Uniform Loads Direction>Global Y Value Relative x1(0) ; x2 (1) ; w(19.5) Apply ↓ Image: Select All Load Type>Uniform Moments/Torsion Direction>Global X Value Relative x1(0) ; x2 (1) ; w(-28.47) Image: All Papely ↓




Figure 32. Wind Loading Input

ନ ∟ pert Load whic activ the stag load Post

Temperature

Specify the temperature loading acting on the entire structure.

The System Temperature function allows us to specify strain, $\varepsilon_t = \alpha (T_2 - T_1)$, over the entire structure as temperature loads.

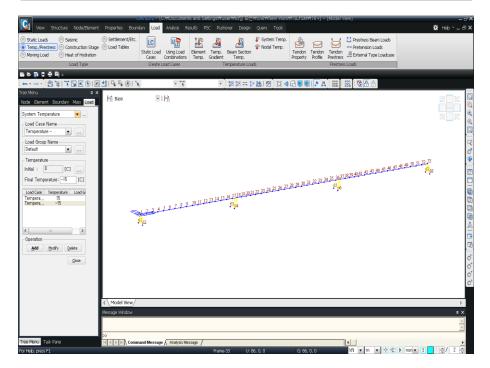


Figure 33. Temperature Loading Input

Specify the differential temperature between the top and bottom chords.

The Beam Section Temperature function generates a temperature differential between top and bottom chords on a part of a rectangle. Since PSC sections are not rectangular sections, they need to be converted into equivalent rectangular sections to be able to specify temperature differential loads.

Where temperature differentials exist as shown below, the parts experiencing the temperature differentials are converted into a rectangle defined by dotted lines having the same area and centroid.

Result List	
Section	test
Base Material	
<u> </u>	Value [Length-Unit:m]
Area	2.896000
SAx	2.033214
SAy	0.502343
bx	0.044395
lyy	16.593738
bxy J	0.142504
(+)Cx	4.250000
(-)Cx	4.250000
(+)Cy	0.187023
(-)Cy	0.312977 👻
List Order	Creation
	Modify

Figure 34. Section Properties calculated by SPC

Beam Section Temperature can be defined as either General Type or PSC Type. General Type assumes the section as a rectangle. When PSC Type is specified, the sections defined as PSC Type in defining Section Data are automatically converted into rectangles and loaded on the parts experiencing temperature differentials.

Although the Beam Section is defined as PSC Type in this example, which results in a simple input process for loading for a temperature differential between the top and bottom chords, input is carried out as General Type after converting into a rectangle.

Figure 34 shows the calculations for cross sectional area and centroid of the top part of the PSC Box section using SPC (Section Property Calculator). The instruction for using SPC is separately documented in user's manual.

Using the above calculation results in conversion into an equivalent rectangle, which will be loaded, as follows:

Area = 2.896	$5m^2$
$H = 2 \times 0.312$	977m = 0.625954m
$\cdot B - \frac{Area}{a} - \frac{Area}{a}$	$\frac{2.896}{2.896} = 4.626m$
$\dots D = \frac{1}{H}$	0.625954

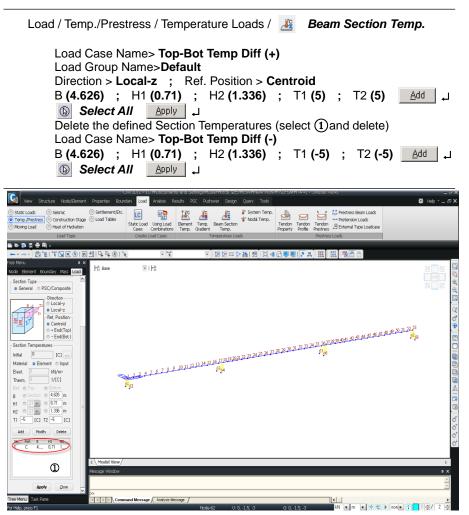
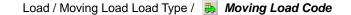


Figure 35. Input for Temperature Differential between Top & Bottom Chords


Live Load

The sequence of defining the live load is as follows:

```
Select a Code defining live load: Define Moving Load Code
Define lanes: Traffic Line Lanes
Define vehicles: Vehicles
Define live load cases: Moving Load Cases
```

Select a Code, which specifies live load

The input process and the parameters are tailored to the selected Code.

Moving Load Code>BS

Define traffic lanes

Eccentric and symmetrical loading can be considered for the transverse position of traffic lanes. In this tutorial, we specify only a symmetrical loading case as described below.

The eccentricity is positive (+) if the traffic lane (center) is on the right side of the elements in the direction of traffic, and vice versa.

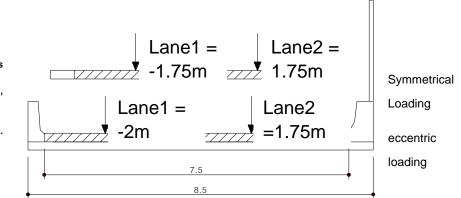


Figure 36. Traffic Lanes & Eccentricities

Since this example bridge is straight and symmetrical, only the wind loading in the +Y direction has been applied. For the worst condition, only the eccentric live load in the +Y direction is entered. Refer to the Figure 36 for the traffic lanes and eccentricities to define 2 traffic lanes.

Top View	
Load / Moving Load / Traffic Line Lanes Click Add J Lane Name (Lane 1 left) Traffic Lane Properties Eccentricity (-1.75) ; Wheel Spacing (1) ; L Vehicular Load Distribution > Lane Element Selection by > 2 Points ((0, 0, 0)(125, 0, 0)) Click OK	₋ane Width (3.5)
Click Add J Lane Name (Lane 2 right) Traffic Lane Properties Eccentricity (1.75) ; Wheel Spacing (1) ; La Vehicular Load Distribution > Lane Element Selection by > 2 Points ((0, 0, 0)(125, 0, 0)) Click OK	ane Width (3.5)

Help - _ & X Seismic
 Ess
 Constru Traffic Traffic Moving (United States) oress Construction Stage) Load Table ne Name : Lane 2 right 🖈 ا 🕲 📮 🖓 ا 19 15 = D 14 17 12 4 C 9 9 17 A III 22 16 C 0 raffic Lane Properties 1th Start End Hit Base • I Hà ricity 3,5 alalalalalala ¥. End (deg) • Picking • Nur m 1,75

Figure 37. Traffic Lane Input Dialog & Input Result

When a traffic lane is curved or when the lane data entry with 2 Points becomes awkward due to discontinuity, select "Number" and directly type in the element numbers. (In this case, even if you select "Number" and input "1 to 53", the same traffic lanes are selected)

Definition of Vehicle Loads

Define the vehicles for live loads.

Type HA & HB(Auto) Standard Add Liser Defined Modify Delete Close	HA & HB(Auto) Standard Add User Defined Modify Delete		Vehicles	X
Modify Delete Close	Modify Delete			
 	Delete Close			
Close	Close			
Figure 38. Definition of Vehicle Loads	Figure 38. Definition of Vehicle Loads			Close
● Define Standard Vehicular Load Standard Name B037/01 Standard Load Image: Standard Load	Standard Name	Fig	≎ Define Standard Vehicular Load ⊤Standard Name	×

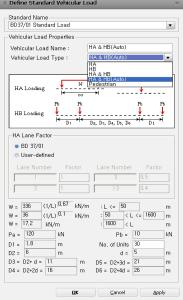


Figure 39. Definition of BD37/01 Standard Vehicular Load

MIDAS/Civil contains the standard vehicle loads such as BS 5400, BS BD 37/01 AASHTO Standard AASHTO LRFD, Caltrans, etc.

► Conditions for applying live loads

To consider Load Cases, which combines the effects of HA and HB vehicle, Load case name MV U 1, MV U 2 3, MV S 1 and MV S 2 3 are created as below.

Type of Design Combination Factor Ultimate Limit State P Combination of Loads Combination 1 MV U 1 MV S 1 Combination 2 & 3 MV U 2 3 MV S 2 3

Table 1. Definition of Load Case Name

Load / Moving Load Analysis Data / 对 Moving Load Cases
Click Add
Load Case Name (MV U 1) Check on Auto Live Load Combination Type of Design Combination Factor> Ultimate Limit State Combination of Loads> Combination 1
Load Case Data Scale Factor field (1) ; Number of Loaded Lanes (2) Vehicle> HA & HB (Auto)
Assignment Lanes List of Lanes (Lane 1 left, Lane 2 right) -> Selected Lanes
Load Case Name (MV U 2 3) Type of Design Combination Factor> Ultimate Limit State Combination of Loads> Combination 2 or 3

Load factors for HA loading for ULS, SLS, Combination 1 and Combinations 2 & 3 are taken from Section 6.2.7 of BD 37/01. Load factors for HB loading for ULS, SLS, Combination 1 and Combinations 2 & 3 are taken from Section 6.3.4 of BD 37/01. These load factors are automatically incorporated into moving load analysis results. Therefore, to avoid duplication, the user should not apply the load factors for moving loads while generating the Load Combinations.

Over the second cases	×	🗢 Define Moving Load Case 🛛 💥
Load Case Description MV U 2 3 MV S 1 MV S 2 3 MV S 2 3	Add Modify Delete	Load Case Name : MV S 2 3 Description : Auto Live Load Combination Type of Design Combination Factor • Ultimate Limit State Combination of Loads • Combination of Loads • Combination 2 or 3 Sub-Load Cases • Combined • Independent • Vehicle Scale Lane1 Lane2 HA & H., 1 Lane Lane • Add Modify Delete QK Cancel Apply
Sub-Load Case		x
Load Case Data Scale Factor : Number of Loade Vehicle : HA & I		

Load Case Data		
Scale Factor 3	U	
Number of Loade	ed Lanes : 2	▲ ▼
Vehicle : HA &	HB(Auto) 🔻	
_ Assign Lanes —		
List of Lanes	Selected Lanes Lane 1 left Lane 2 right	HB Straddling Two Lanes
	->	->
	<-	<-
	ŪK	Cancel Apply

Figure 40. Definition of Live Load

Differential Settlement

► Definition of Differential Settlement Groups

Select the nodes, which can settle simultaneously, representing the abutments and piers, to individually define them as a Settlement Group.

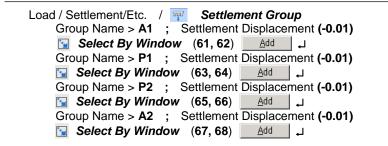


Figure 41. Definition of Differential Settlement Groups

▶ Conditions for Differential Settlement Loads

Using the data for differential settlement groups, the loading condition is defined.

Maximum/Minimum numbers of differential settlement groups are specified. Min: 1 support and Max: 3 supports are specified to investigate all the possible combinations of simultaneous settlements from which Min/Max results are produced.

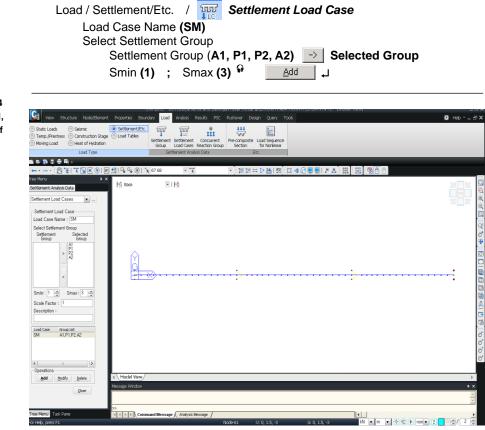
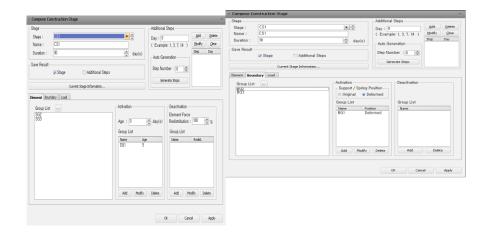


Figure 42. Definition of Loading Conditions for Differential Settlements

Since the magnitude of the settlements of all 4 groups is identical, only a maximum of 3 combinations is used. Advanced Applications

Definition of Construction Stages


_

We refer to the composition of construction stages outlined earlier to define the stages.

Load / Construction Stage / 🖟 Define C.S
Name> CS1
Duration>30
Element tab
Group List>SG1 ; Activation>Age (5) 🌳 🛛 🛕
Boundary tab
Group List>BG1
Activation>Spring/Support Position>Deformed (on)
Load tab
Group List>Dead, PS1, Diaphragm1
Activation>Active Day>First

Stage ((days)	Element	Boundary	Load
CS1	30	SG1	BG1	Dead, PS1, Diaphragm1
CS2	30	SG2	BG2	PS2, Diaphragm2
CS3	30	SG3	BG3	PS3, Diaphragm3
CS4	10,000	-	-	Superimposed dead

Concrete maturity (age) of 5 days is activated.

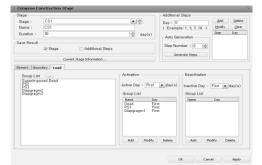


Figure 43. Dialog Boxes for defining Construction Stages

Performing Structural Analysis

Select the analysis options for construction stage analysis and moving load analysis and perform analysis.

Construction Stage Analysis

All the dead loads applied during the construction stages are included in CS:Dead Load. If results for other Load Cases need to be separated from CS:Dead Load, such Load Cases need to be selected in "Load Cases to be Distinguished from Dead Load for C.S. Output". Separate results are then produced in CS:Erection Load.

Analysis / Construction Stage Analysis Control

Load Cases to be Distinguished from Dead Load for C.S. Output Load Case>Superimposed Add Save Output of Current Stage(Beam/Truss) (on) &

Last Stage Other Stage CS1 Instant Construction Stage Analysis Select Stages for Restart Analysis Option Include Nonlinear Analysis Nonlinear Analysis Control Include Facilibrium Element Nodal Forces Include Eatlibrium Element Nodal Forces Include Time Dependent Effect Only P-Detta Analysis Control Include Time Dependent Effect Control Calculate Constant : Stress * Beam Section Property Changes Constant * Change with Tendon Frame Output Calculate Contruent Forces of Frame	Final Stage		Cable-Pretension Force Control
Restart Construction Stage Analysis Select Stages for Restart Analysis Option Convert Final Stage Member Forces to Initial Forces for Post C, S, Analysis Option Include Nonlinear Analysis Nonlinear Analysis Control Include Poulta Final Stage Accumulative Stage Include Poulta Effect Only P-Delta Analysis Control Include Poulta Effect Only P-Delta Analysis Control Include Time Dependent Effect Time Dependent Effect Control Load Cases Superimposed Superimposed Add Delete Constant Beam Constant Change Section Property Changes Constant Constant Change with Tendon Frame Output Calculate Concurrent Forces of Frame	 Last Stage Other Stage 	CS1 💌	Internal Force Add Replace
Include Nonlinear Analysis Nonlinear Analysis Control Include Nonlinear Analysis Nonlinear Analysis Control Include Nonlinear Analysis Control Accumulative Stage Acc	Restart Construction Stage Analys	is Select Stages for Restart	
Independent Stage Accumulative Stage Include Equilibrium Element Nodal Forces Include Equilibrium Element Nodal Forces Include Time Dependent Effect Only P-Delta Analysis Control Load Cases Superimposed Include Time Dependent Effect Incode Case Superimposed Incode Case Superimposed Incode Case Incod	Analysis Option		Truss Beam
Include P-Delta Analysis Control Include Time Dependent Effect Ime Dependent Effect Control Icoad Cases Solution Solution Consider Stress Decrease at Lead Length Zone by Post-tension Consider Stress Decrease at Lead Length Zone by Post-tension Consider Stress Decrease at Lead Length Zone by Post-tension Consider Stress Decrease at Lead Length Zone by Post-tension Consider Stress Decrease at Lead Length Zone by Post-tension Constant Stress * Beam Section Property Changes Constant Change with Tendon Frame Output Calculate Concurrent Forces of Frame	● Independent Stage	 Accumulative Stage 	
Include Time Dependent Effect Ime Dependent Effect Control Load Cases to be Distinguished from Dead Load for C.S. Output Load Case Superimposed Add Delete Load Type for C.S. (Erection Load): Dead Load of Wearing Surface Constant Calculate Concurrent Forces of Frame			
Load Case Superimposed Load Case Add Delete Constant Stress Decrease at Lead Length Zone by Post-tension Constant Stress - Beam Section Property Changes Constant Change with Tendon Constant Change with Tendon Calculate Concurrent Forces of Frame			Contraction of the second seco
Load Type for C,S, (Erection Load) : Dead Load of Wearing Surface Constant Calculate Concurrent Forces of Frame		Load Case	
Load Type for C.S. (Erection Load) : [Dead Load of Wearing Surface] - Frame Output		Delete	Booto Section Broporty Changes
Frame Output Calculate Concurrent Forces of Frame		Delete	Dealli Section Froperty Changes
Calculate Concurrent Forces of Frame			
Calculate Output of Each Part of Composite Section	Load Type for C.S. (Erection Load) :		Constant Change with Tendon
	Load Type for C.S. (Erection Load) :		Constant Change with Tendon Frame Output
	Load Type for C.S. (Erection Load) :		Constant Change with Tendon Frame Output Calculate Concurrent Forces of Frame

Figure 44. Construction Stage Analysis Control Data

Check on "Save Output of Current Stage (Beam /Truss)" to produce member forces generated only from each (current) stage. That is, not the member forces accumulated up to that (current) stage.

Checking on "Change with Tendon" in "Beam Section Property Change" will reflect the effect of tendons for calculating section properties by construction stages.

Specify the number of points	Select the method of influence line calculation and the options for generation of analysis results.							
per beam element on which influence line is calculated. A number between 1 to 10 can be specified.	Analysis / Moving Load Analysis Control Influence Generating Method > Number/Line Element (2) [©] Analysis Results Frame>Normal + Concurrent Force [©]							
Concurrent								
Force" will generate member forces,	♦ Moving Load Analysis Control Data							
which take place simultaneously under the same loading. Check on "Combined Stress" to generate combined stress results.	Influence Generation Method Number/Line Element : 2 Distance between Points : 0.3 m							
	Analysis Results Plate Center Center + Nodal Stress Calculation Calculation							
A substantial amount of results are generated from moving load analysis. Only the desired parts should be selected in groups for output generation.	Calculation Filters Placetions All Group : Placements All Group : Forces/Moments All Group : Figure 45. Moving Load Analysis Control Dialog							

Moving Load (Live Load) Analysis

Execution of Structural Analysis

We have completed the process of structural modeling and defining the analysis options, so analysis can begin now.

Analysis / 🛯 Perform Analysis

Checking Analysis Results

Construction stage analysis results will be reviewed via the versatile functionality of midas Civil.

Element Properties & Section Properties for each Construction Stage

The properties of each element used during the construction stages are produced in a table.

Select a stage to see the corresponding data; initial (Start) age, final (End) age, initial (Start) modulus of elasticity, final (End) modulus of elasticity, shrinkage accumulated up to the end of the corresponding stage and creep coefficient.

When a construction stage is selected, only the results pertaining to the corresponding stage are produced. The Post CS construction stage is selected followed by pressing the Apply button to change the result values as below.

Results / Result Table / Construction Stage / Element Properties at Each Stage

View Structure Node/Bernent	Prop	erties Bo	undary Lo	ad Analysis	Results PSC	Pushover Design	Query Tools	- (Hesuit- (Element P	roperties ai Ea			 ∰ Heb *
Load Perces * Proces	am *	H+ Local	VElement * Direction ction Momen		amping Ratio			약 Cable Control * 나 Camber/Reaction * 號 Tendon Loss Graph	Bridge Girder Diagram	Text	Results Tables *	
mbination Results			Detail	Modi	e shape	Moving Load	Time History	Eridge		Text	Tables	
6 6 5 4 6 6 .												
	•	L SL (R)	*		1		と刃目の	8	111 122 17	66		
Menu •×			-		Start Elasticity	End Elasticity	Consistive	1				~
iles Werks Group Report		Elen	Start Age	End Age	(kN/n*)	(kN/m*)	Shrinkage	Creep Coeff,				
Works		The Eleme	nt properties	at the stage o	r (co4)	,						
Analysis Control Data		Stage		CS4		Apply						
S. Moving Load Analysis Data		1	200	10095-00	97502930,750	0 39957999.014	-0.000	3 2.1641				
Construction Stage Analysis [St		2	95.00	10095.00	37582930,758			3 2,1641				
Structures		3	95,00	10095.00	37582930,758							
- Nodes : 61		4	95,00	10095,00	37582930,758							
Elements : 52		5	95,00	10095,00	37582930,758							
Properties		5	95,00	10095,00	37582930, 758 37582930, 758							
Material : 2		8	95,00	10095.00	37582930,758							
Time Dependent Material(C&S)		8	95.00	10095.00	37582930.758							
GA Time Dependent Material Link		10	95.00	10095.00	37582930,758	8 39957999.314	2 -0.000					
- I Section : 1		11	95,00	10095,00	37582930,758							
Boundaries		12	95,00	10095,00	37582930,758							
Supports : 8		13	95,00	10095,00	37582930,758							
- Flastic Link : 8		14	95,00	10095,00	37582930,758							
Static Loads		15	95,00 95.00	10095,00	37582930,758 37582930,758							
Static Load Case I [Self Weight]		17	95.00	10095.00	37582930,758							
Static Load Case 2 [Non-Structu		18	95.00	10095.00	37582930,758							
Static Load Case 3 (Prestress ;)		19	95.00	10095.00	37582930,758							
Static Load Case 4 [Superimpos]		20	95,00	10095,00	37582930,758							
🛛 💽 Static Load Case 5 [Wind :]		21	65,00	10065,00	37053795,975							
🗉 🔝 Static Load Case 6 [Temperature		22	65,00	10065,00	37053795,975							
🗉 🔤 Static Load Case 7 (Temperature		23 24	65.00 65.00	10065.00	37053795,975							
🛛 🔯 Static Load Case 8 [Top-Bot Ter		24	65.00	10065.00	37053795,975 37053795,975							
Static Load Case 9 [Top-Bot Ter		26	65.00	10055.00	37053795,975							
Prestressing Tendon		27	65.00	10055.00	37053795,975							
Tendon Property : 1		20	65,00	10065,00	37053795,975							
Moving Load Analysis		29	65,00	10065,00	37053795,975							
- Moving Load Analysis		30	65,00	10065,00	37053795,975	7 39957607,579		3 2,1640				
Traffic Line Lanes : 2	1.1	Elemen	t Properti	es at Each	Stage /		18					5
ED Vehicles : 1					ies at Each Stage	1/						þ
Moving Load Cases : 4						<i>y</i>			_	-		
T Settlement Analysis												Q 3
III Settlement Group : 4	TOTAL	SOLUTION	TINE	582,47 [320	1							
Settlement Load Cases : 1												
- 2												3
Menu Task Pane	14 4			ce Analysis								-
	12 2		vernment Messi	the Vigential	meaning \							2 2 0 d/ 2 4

PostCS (Post construction stage)

Figure 46. Element Properties at each Construction Stage

Transformed section properties used in the last stage of the construction stage analysis are produced in a table. The properties may change with change in modulus of elasticity (if a time dependent material is used). And if tendons are included in sections, the tendon properties and the timing of grouting will affect the section properties.

- * In order to reflect the Tendon in section property calculations, "Change with Tendon" needs to be selected in Construction Stage Analysis Control.
- Beam Section Property Changes C Constant © Change with Tendon
- * If "Change with Tendon" is selected, and "Bonded" type in "Tendon Property" is selected, the Tendon will be reflected in the section property calculations. Otherwise (in case of "Unbonded"), the Tendon is excluded and the net section is used in the calculations.

The section properties at the last stage are used for calculating stresses due to additional loads applied at the completed stage such as moving load, temperature load, wind load, etc.

Results / Result Table / Construction Stage / Beam Section Properties at Last Stage

		Area	bex	1	Izz	Cyp	Cym	Czp	Czm	WArea	Translationa	I Distance
iem i	Part	(m*)	(m*)	(m*)	(m ⁺)	(m)	(m)	(m)	(m)	(m*)	Local-y (m)	Local-z (m)
11		6,2587	15,9796	7,8969	29,8433	4,2500	4,2500	1,2137	1,7863	6,2087	0,0000	-0,0043
1 J		6,2587	15,9796	7,9055	29,8336	4,2500	4,2500	1,2154	1,7846	6,2087	0,0000	-0,0060
21		6,2587	15,9796	7,9055	29,8336	4,2500	4,2500	1,2154	1,7846	6,2087	0,0000	-0.0060
2 J		6,2587	15,9796	7,9195	29,8239	4,2500	4,2500	1,2171	1,7829	6,2087	0,0000	-0.0077
31		6,2587	15,9796	7,9195	29,8239	4,2500	4,2500	1,2171	1,7829	6,2087	0,0000	-0,0077
ЗJ		6,2587	15,9796	7,9345	29,8164	4,2500	4,2500	1,2184	1,7816	6,2087	0,0000	-0,0090
4 1		6,2587	15,9796	7,9345	29,8164	4,2500	4,2500	1,2184	1,7816	6,2087	0,0000	-0.0090
4 J		6,2587	15,9796	7,9472	29,8111	4,2500	4,2500	1,2194	1,7806	6,2087	0,0000	-0,0099
51		6,2587	15,9796	7,9472	29,8111	4,2500	4,2500	1,2194	1,7806	6,2087	0,0000	-0,0099
5 J		6,2587	15,9796	7,9556	29,8080	4,2500	4,2500	1,2199	1,7801	6,2087	0,0000	-0.0105
61		6,2587	15,9796	7,9556	29,8080	4,2500	4,2500	1,2199	1,7801	6,2087	0,0000	-0.0105
6 J		6,2587	15,9796	7,9585	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0,0107
71		6,2587	15,9796	7,9585	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0,0107
7 J		6,2587	15,9796	7,9585	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0.0107
81		6,2587	15,9796	7,9585	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0.0107
8 J		6,2587	15,9796	7,9585	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0,0107
91		6,2587	15,9796	7,9585	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0,0107
9 J		6,2587	15,9796	7,9584	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0.0107
10 I		6,2587	15,9796	7,9584	29,8070	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0.0107
10 J		6,2587	15,9796	7,9587	29,8069	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0,0107
11 I		6,2587	15,9796	7,9587	29,8069	4,2500	4,2500	1,2201	1,7799	6,2087	0,0000	-0.0107
11 J		6,2587	15,9796	7,9488	29,8102	4,2500	4,2500	1,2195	1,7805	6,2087	0,0000	-0.0101
12		6,2587	15,9796	7,9488	29,8102	4,2500	4,2500	1,2195	1,7805	6,2087	0,0000	-0.0101
12 J		6,2587	15,9796	7,9225	29,8203	4,2500	4,2500	1,2177	1,7823	6,2087	0,0000	-0,0083
13 I		6,2587	15,9796	7,9225	29,8203	4,2500	4,2500	1,2177	1,7823	6,2087	0,0000	-0.0083
13 J		6,2587	15,9796	7,8904	29,8376	4,2500	4,2500	1,2146	1,7854	6,2087	0.0000	-0.0052
14		6,2587	15,9796	7,8904	29,8376	4,2500	4,2500	1,2146	1,7854	6,2087	0,0000	-0,0052
14 J		6,2587	15,9796	7,8698	29,8638	4,2500	4,2500	1,2102	1,7898	6,2087	0,0000	-0,0008
15 I		6,2587	15,9796	7,8698	29,8638	4,2500	4,2500	1,2102	1,7898	6,2087	0,0000	-0.0008
15 J		6,2587	15,9796	7,8785	29,8896	4,2500	4,2500	1,2060	1,7940	6,2087	0,0000	0.0034
16 I		6,2587	15,9796	7,8785	29,8896	4,2500	4,2500	1,2060	1,7940	6,2087	0,0000	0,0034
16 J		6.2587	15,9796	7 8877	29,8987	4.2500	4,2500	1 2045	1 7955	6 2087	0.0000	0.0049
3eam S	ectio	n Propertie	s at Last S	stage /			<			101		

In the *.out file, we can see the section properties for all the stages in addition to those for the final stage.

Figure 47. Section Property Data at the Last Stage

Checking Construction Stage Member Forces & Stresses

Member forces can be checked in a diagram using the Beam Diagram function. If a beam element is selected after invoking Quick View, member forces at any particular point on the selected element can be checked in detail.

Type of Display>Quick View

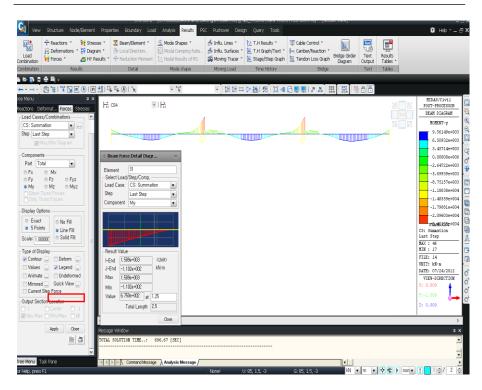


Figure 48. Checking Member Forces at CS4

Using the Beam Stresses(PSC) function, the stresses in a PSC section can be checked in a diagram. A total of 10 locations, Top/Bot vetices (1 to 4), Center (7 & 8) and shear checking points (5, 6, 9 & 10) defined at the time of defining the PSC section, can be checked.

Let us check the bottom chord stress for CS:Summation at the last construction stage.

Results / Stresses / Beam Stresses(PSC)... CS4 Load Cases/Combinations>CS:Summation ; Step>Last Step Section Position>Position 3 Components>Sig-xx(Summation) Type of Display Contour (on) ; Legend (on)

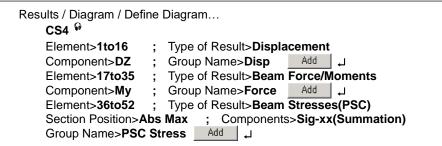
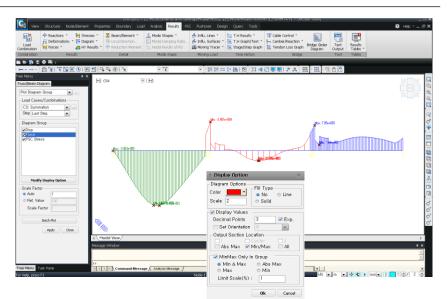



Figure 49. Bottom Chord Stresses at the Last Stage


Top-Bot chord stresses for each construction stage can be also checked in Bridge Girder Diagram. In case of a PSC section, Beam Stresses (PSC) can be used to check Contour in the Model View state. Using User Defined Diagram, different results (displacements / member forces / stresses) for different elements/groups can be produced.

We will generate results for displacements in the left span, bending moments in the middle span and stresses in the right span in a single diagram simultaneously. Let us check displacements / member forces / stresses for CS:Summation at the last construction stage.



Results / Diagram / Plot Diagram...

Load Cases/Combination>CS: Summation Diagram Group>Disp(on), Force(on), PSC Stress(on) ,

Note that the three plots above have different scale factors to properly display in this figure. In order to check the results, you may enlarge the figure and compare the values.

Combined results can be produced only in the same construction stage.

Output option
 can be selected in
 Modify Display Option

Checking Results using Graphs

The change in stresses with the progress of construction stages in the support element (No.36) will be checked in a Graph.

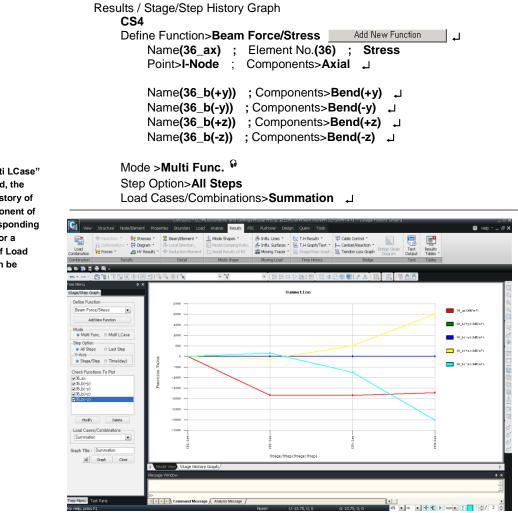


Figure 51. Change in Stresses with Construction Stages

If "Multi LCase" is selected, the results history of the component of the corresponding element for a number of Load Cases can be checked.

Checking Results using Tables

Tables are also useful in checking construction stage analysis results. Tables can be manipulated in various ways by right-clicking on the tables.

From "Records Activation Dialog", tables can be generated by selecting elements to be checked for stresses, load cases, construction stages (steps), elements on which points of stress output are required, load cases, construction stages (steps), stress output locations on elements, stress output locations on a section, etc.

The Sorting Dialog allows us to sort/arrange the data based on the sorting criteria. The Style Dialog allows us to change the data type and produce results.

Let us check top vertex stresses for CS:Summation at the last construction stage.

Results / Result Tables / Beam / **H** Stresses(PSC)

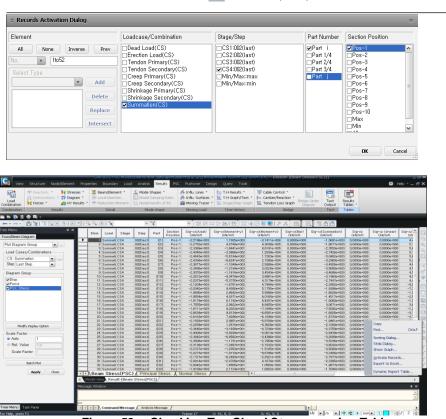
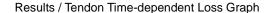


Figure 52. Checking Top Chord Stresses using Table

In "Construction Stage Analysis Control" dialog box, if "**Save Output of Current Stage** (**Beam/Truss**)" Save Output of Current Stage(Beam/Truss) option has been checked on, we can generate the member forces resulting only from the corresponding construction stage (not the member forces accumulated up to that stage). So in order to produce results for the un-accumulated effects of one given construction stage, check "Current Step Result" for all the stages.

Results	/ Resu	ılt Tabl	es / I	Beam / 🎙	Force	9			
Records Activ	ation Diak	00							~
© RELOTUS ALLIV	ation Dial	uy	_	_	_	_	_	_	
Vode or Element			l	_oadcase/Com	bination	Stage	/Step		Part Number
All None	Invers	se Pr	ev	Dead Load(C	S)	∠ CS	1:002(last)		I Part i
lement 💌 2	0			Erection Load			2:002(last)		□Part 1/4
	-]Tendon Prima Tendon Seco			3:002(last) 1:002(last)		□ Part 2/4 □ Part 3/4
Select Type				Creep Primar			/Max:max		□Part j
Element Type	•	Add		Creep Second		Mir	/Max:min		- Annotation and Annotation
TRUSS	^	Delete]Shrinkage Prii Shrinkage Sei					
BEAM PLANE STRESS	=			Summation(C					
PLATE PLANE STRAIN	_	Replac							
AXISYMMETRIC SOLID	~	Interse	et l						
SULID		Incorse							
Elem Load	Stage	Step 002(last	Part	Axial (kN) -10296.16	Shear-y (kN) 0.00	Shear-z (kN) 1802.79	Torsion (kN·m) 0.00	Moment-y (kN·m) -1447.41	Moment-z (kN·m) 0.1
20 Summa	ti CS2	002(last			-0,00	253,98	0,00	-1650,80	-0,0
20 Summa 20 Summa		002(last			-0,00	319,25 -485,96	0,00	-1514,36 -4833.07	-0,0 -0,0
	ti Min/Max		1[20]		-0,00	1848.67	0,00	-1083,72	-0,0
20 Summa	ti Min/Max	min	I[20]	-17786,08					-0,0
								nber forc on stage	es
Elem Load	Stage	Step	Part	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN∙m)	Moment-y (kN∙m)	Moment-z (kN∙m)
20 Summat		002(last)	I[20]	97,94	0,00	-21,12	0,00	10,11	0,0
20 Summati 20 Summati		002(last) 002(last)	I[20] I[20]	68,91 41,75	-0,00 -0,00	-15,28 -4,99	0,00	-104,60 -92,17	-0,0
20 Summat		002(last)	1[20]	125,97	-0,00	-4,99	-0,00	-43,41	-0,0
20 Summat	Min/Max	max	1[20]	0,00	0,00	0,00	-0,00	0,00	0,0
20 Summat	Min/Max	min	1[20]	0,00				ely due t	0,0


Figure 53. Member Forces due to the sole effect of Current Stage (below)

Prestress Losses

We can check the change in tendon tension at each construction stage due to prestress losses.

In the "Tendon Time Dependent Loss Graph" dialog box, only the tendons included in the stage selected in the "Stage" selection window can be checked. A Graph is generated for selected tendons, selected Stage and selected Step. Click Animate to check the results in an animation.

Ļ



Figure 54. Graph showing Loss of Prestress Forces

Checking Tendon Information

The tendon information used in construction stage analysis can be produced in a table.

The coordinates of the tendons placed in elements are produced.

|--|

Tendon Name	No	× (m)	y (m)	z (m)
A1L	0	0,0000	0,0000	0,0000
A1L	1	0,0000	2,4660	-1,0000
A1L	2	0,6250	2,4502	-1,0790
A1L	3	1,2500	2,4341	-1,1593
A1L	4	1,8750	2,4176	-1,2420
A1L	5	2,5000	2,4004	-1,3281
A1L	6	3,1250	2,3829	-1,4157
A1L	7	3,7500	2,3656	-1,5018
A1L	8	4,3750	2,3493	-1,5837
A1L	9	5,0000	2,3340	-1,6602
A1L	10	5,6250	2,3197	-1,7316
A1L	11	6,2500	2,3063	-1,7984
A1L	12	6,8750	2,2939	-1,8607

Figure 55. Tendon Coordinates Table

Elongation of tendons is produced. Timing of tensioning each tendon, elongation of tendons and elements at the start and end points of the tendons and their sum are produced.

			Tendon E	longation	Element E	longation	Summa	ation
Tendon Name	Stage	Step	Begin (m)	End (m)	Begin (m)	End (m)	Begin (m)	End (m)
A1L	CS1	001(first	0,2766	0,0000	0,0005	0,0000	0,2770	0,000
A1R	CS1	001(first	0,2766	0,0000	0,0005	0,0000	0,2770	0,000
A2L	CS1	001(first	0,2785	0,0000	0,0005	0,0000	0,2789	0,000
A2R	CS1	001(first	0,2785	0,0000	0,0005	0,0000	0,2789	0,000
A3L	CS1	001(first	0,2799	0,0000	0,0005	0,0000	0,2803	0,000
A3R	CS1	001(first	0,2799	0,0000	0,0005	0,0000	0,2803	0,000
A4L	CS1	001(first	0,2825	0,0000	0,0005	0,0000	0,2829	0,000
A4R	CS1	001(first	0,2825	0,0000	0,0005	0,0000	0,2829	0,000
B1L	CS2	001(first	0,2569	0,0000	0,0004	0,0000	0,2573	0,000
B1R	CS2	001(first	0,2569	0,0000	0,0004	0,0000	0,2573	0,000
B2L	CS2	001(first	0,2509	0,0000	0,0004	0,0000	0,2513	0,000
B2R	CS2	001(first	0,2509	0,0000	0,0004	0,0000	0,2513	0,000
B3L	CS2	001(first	0,2818	0,0000	0,0005	0,0000	0,2822	0,000
B3R	CS2	001(first	0,2818	0,0000	0,0005	0,0000	0,2822	0,000
B4L	CS2	001(first	0,2848	0,0000	0,0005	0,0000	0,2853	0,000

Figure 56. Tendon Elongation Table

The effective stresses and effective prestressing force in the tendons can be checked by group and construction stage. Vertical and horizontal force components of the tendons can be readily obtained from the distance from the centroid of the section to the tendon group and the orientation of the tendon (direction cosine).

	Elem	Part	Tendon Number	Yp (m)	Zp (m)	Average Sin θ ([deg])	Average Cos θ ([deg])	Average Stress (kN/m#)	Average Force (kN)
	The arra	ngement	data for ter	ndon group	[A1] at the :	stage of [CS1]			
	Tendon	Group	A1		Stage	CS1	Apply		
•	1	I.	2	0,0000	0,2094	-0,1301	-0,9915	1140860,7379	1838,154
	1	J	2	0,0000	-0,1187	-0,1301	-0,9915	1166973,4564	1880,227
	2	1	2	0,0000	-0,1187	-0,1317	-0,9913	1166973,7832	1880,228
	2	J	2	0,0000	-0,4507	-0,1317	-0,9913	1196465,8749	1927,745
	3	1	2	0,0000	-0,4507	-0,1028	-0,9947	1196466,3047	1927,746
	3	J	2	0,0000	-0,7090	-0,1028	-0,9947	1228038,9033	1978,616
	4	1	2	0,0000	-0,7090	-0,0736	-0,9973	1228039,2614	1978,616
	4	J	2	0,0000	-0,8934	-0,0736	-0,9973	1250906,0441	2015,459
	5	1	2	0,0000	-0,8934	-0,0442	-0,9990	1250906,3049	2015,460
	5	J	2	0,0000	-1,0039	-0,0442	-0,9990	1222161,0060	1969,145
	6	1	2	0,0000	-1,0039	-0,0147	-0,9999	1222161,1722	1969,146
	6	J	2	0,0000	-1,0406	-0,0147	-0,9999	1194626,3057	1924,781
	7	1	2	0,0000	-1,0406	0,0000	1,0000	1194626,3532	1924,782
	7	J	2	0,0000	-1,0405	0,0000	1,0000	1174713,4298	1892,698
	8	1	2	0,0000	-1,0405	-0,0000	-1,0000	1174713,4298	1892,698
	8	J	2	0,0000	-1,0406	-0,0000	-1,0000	1155564,6599	1861,845
	9	I.	2	0,0000	-1,0406	0,0001	1,0000	1155564,6595	1861,845
	9	J	2	0,0000	-1.0404	0.0001	1,0000	1136158,1002	1830,577

Results / Result Tables / Tendon Arrangement...

Figure 57. Tendon Arrangement Table

The effective stresses & forces in the table above are the results reflecting both immediate and long-term losses of the tendon. If the effective prestress forces for the immediate losses (friction, anchorage slip & elastic shortening) other than the long-term losses are of interest, right-click on the table and check the forces from "Tendon Immediate Loss Graph".

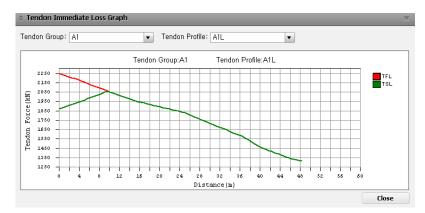


Figure 58. Tendon Force due to Immediate Loss

Select a construction stage and click <u>Apply</u> to produce the results corresponding to the stage. For each tendon group, losses to due friction, anchorage slip, elastic shortening, creep, shrinkage, relaxation, etc. are separately classified in a table.

Results Tab / Result Tables / Tendon Loss...

Stress (After Immediate Loss) : A (kN/m*) Elastic Deform, Loss : B (kN/m^e) Stress(Elasti c Loss)/ Stress(Immed Creep/Shrinkage Loss (kN/m®) Stress(After All Loss)/ Stress(After Immediate Loss) Relaxation Loss (kN/m*) Elem Part Effective Num. iate Loss) The Loss of tendon group [A1] at the stage of [CS1] CS4 Apply 1161959,6511 -7783,5949 -7975,1345 -7975,1345 -1975,1345 -1977,5390 -8390,4721 -8542,4736 -8542,4736 -8542,4736 -8542,4736 -8542,4736 -8340,3438 -8340,3438 -8340,52724 -8005,2724 -8005,2724 -8005,2724 -7873,5265 -7743,3852 -7755,7755 -7755,7755 -7755,7755 -13576,4332 -15003,3760 -15589,3927 -15589,4958 -15589,4958 -15641,815 -15640,9162 -15381,0364 -14165,0963 -14165,0963 -14165,0963 -14165,0963 -14165,0963 -12818,7387 -12818,6900 -11901,7022 -11515,2451 -11940,7051 -11640,7152 267,115 2,0000 119058,258 121958,258 121958,258 121958,206 121958,206 121958,206 12559,359 12559,359 12559,359 12559,359 12559,359 124413,847 124413,847 124413,847 12509,193 119413,609 315,713 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 315,7089 396,7600 396,7729 479,3410 479,338 544,6933 544,6933 552,5986 552,5943 521,4844 521,4831 488,5435 488,5435 473,5575 1,0003 1,0003 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0004 1,0003 1,0003 1,0003 475,5742 475,5740 494,6497 494,6557 465,1451 465,1616 367,9269 367,9462 262,1179 262,1380 220,5014 220,5053 10 | 10 J 11 | 11 J 12 | 12 J 13 | 13 J 14 | 14 J 15 | -11640,7152 -12265,3886 -12265,6237 -12557,5779 -12558,2697 -12444,9432 -12445,9457 -12472,6840 -12474,1168 -13507,6980 -13508,0415 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 2,0000 Tendon Loss (Stress) Tendon Loss (Force)

Select a construction stage and click Apply to produce the results corresponding to the stage.

Figure 59. Tendon (Tension) Loss Table

Right-click on the table and select "Tendon Time-dependent Loss Graph" to check the effective prestress forces after accounting for tension losses.

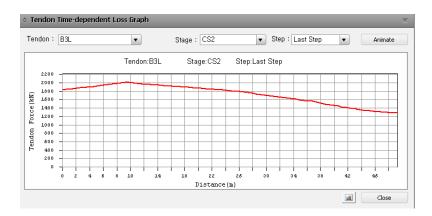


Figure 60. Tendon Time-dependent Loss Graph

Tendon type, property and weight for each group can be tabulated.

Results / Result Tables / Tendon / Tendon Weight...

PostCS 🖗

Tendon Weight can be produced only in the PostCS stage.

Tendon Name	Tendon Num	Area (m²)	Length (m)	Weight/Length (kN/m)	Weight (kN)	Total Weig (kN)
A1L	1,00	0,001611	48,320358	0,126479	6,111520	6,11
A1R	1,00	0,001611	48,320358	0,126479	6,111520	6,11
A2L	1,00	0,001611	48,345183	0,126479	6,114660	6,11
A2R	1,00	0,001611	48,345183	0,126479	6,114660	6,11
A3L	1,00	0,001611	48,282773	0,126479	6,106767	6,10
A3R	1,00	0,001611	48,282773	0,126479	6,106767	6,10
A4L	1,00	0,001611	48,323420	0,126479	6,111908	6,11
A4R	1,00	0,001611	48,323420	0,126479	6,111908	6,11
B1L	1,00	0,001611	45,341275	0,126479	5,734728	5,73
B1R	1,00	0,001611	45,341275	0,126479	5,734728	5,73
B2L	1,00	0,001611	45,381107	0,126479	5,739766	5,73
B2R	1,00	0,001611	45,381107	0,126479	5,739766	5,73
B3L	1,00	0,001611	49,312943	0,126479	6,237062	6,23
B3R	1,00	0,001611	49,312943	0,126479	6,237062	6,23
B4L	1,00	0,001611	49,339207	0,126479	6,240383	6,24
B4R	1,00	0,001611	49,339207	0,126479	6,240383	6,24
C1L	1,00	0,001611	32,159596	0,126479	4,067520	4,06
C1R	1,00	0,001611	32,159596	0,126479	4,067520	4,06
C2L	1,00	0,001611	32,115616	0,126479	4,061957	4,06
C2R	1,00	0,001611	32,115616	0,126479	4,061957	4,06
C3L	1,00	0,001611	36,068159	0,126479	4,561872	4,56
C3R	1,00	0,001611	36,068159	0,126479	4,561872	4,56
C4L	1,00	0,001611	36,026608	0,126479	4,556617	4,55
C4R	1,00	0,001611	36,026608	0,126479	4,556617	4,55
SUM	24.00	-	1038,032491	0,126479	-	131,289

Figure 61. Tendon Weight Table

Checking Moving Load Analysis Results The member forces produced in moving load analysis are the results of maximum values for each component in the corresponding element. As such, the locations of the loads causing each maximum force component may be different. In order to obtain the concurrent member forces, right-click on the table and use the "View by Max Value Item" function. We can then check the corresponding force components associated with one maximum force component.

Results / Result Tables / Beam / 11/15 Force

Loadcase/Combination>MV U 1(MV:min) ; Part Number>Part I ,

(Context Menu) View by Max Value Item Items to Display>**Moment-y**[♀] Load Cases to Display> **MV U 1(MV:min)** ↓

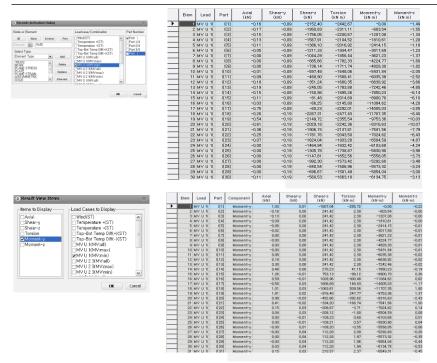


Figure 62. Moving Load Results

When Moment-y is maximum, other force components occurring at the same time are produced.

Checking Stresses due to Combined Loads

Create load combinations.

Results / 👫 Combinations PostCS Name(Temperature) ; Type>Envelop LoadCase> Temperature (+)(ST) ; Factor(1.0) LoadCase> Temperature (-)(ST) ; Factor(1.0) Name(Top-Bot Temp Diff) ; Type>Envelop LoadCase> Top-Bot Temp Diff (+)(ST) ; Factor(1.0) LoadCase> Top-Bot Temp Diff (-)(ST) ; Factor(1.0) Name(ULS 1) ; Type>Add LoadCase>Summation(CS) ; Factor(1.15) LoadCase>Erection Load(CS) ; Factor(1.2) LoadCase>SM(SM) ; Factor(1.2) LoadCase>MV U 1 ; Factor(1.0) Name(SLS 2) ; Type>Add LoadCase>Summation(CS) ; Factor(1.0) LoadCase>Erection Load(CS) ; Factor(1.0) LoadCase>Wind(ST) ; Factor(1.0) LoadCase>SM(SM) ; Factor(1.0) LoadCase>MV S 2 3 ; Factor(1.0) Name(SLS 3) ; Type>Add LoadCase>Summation(CS) ; Factor(1.0) LoadCase>Erection Load(CS) ; Factor(1.0) LoadCase>Temperature(CB) ; Factor(1.0) LoadCase>Top-Bot Temp Diff(CB) ; Factor(0.8) LoadCase>SM(SM) ; Factor(1.0) LoadCase>MV S 2 3(MV) ; Factor(1.0)

Figure 63. Creating Load Combinations

Check stress results due to load combinations.

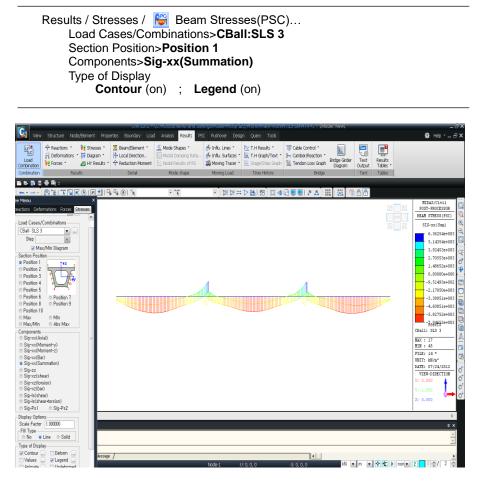


Figure 64. Stress Results due to Serviceability Limit State Combination 3